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Abstract  

Blind identification of signals with actual values has made use of the generating function (GF). In order to better leverage the statistical 

information conveyed on complex signals, this study first generalizes the definition of GF to include complex-valued random variables. 

Next, we propose an algebraic framework for determining the mixing matrix from underdetermined mixtures by means of the 

generalized generating function (GGF). For this, we create two new techniques: GGF-ALS and GGF-TALS. The GGF-ALS technique 

uses an alternating least squares (ALS) algorithm to estimate the mixing matrix through the decomposition of the tensor built from the 

Hessian matrices of the GGF of the data. As a refined iteration of the original Tucker decomposition-based GGF-ALS algorithm, the 

GGF-TALS approach has many advantages. To be more precise, the Tucker decomposition is used to reduce the rank of the original 

tensor created in GGF-ALS, using the components acquired from the left singular-value decomposition of the mode-3 matrix of the 

original tensor. The ALS approach is then used to estimate the mixing matrix by decomposing the core tensor. The proposed GGF-ALS 

and GGF-TALS methods perform nearly as well in terms of the relative errors as the state-of-the-art GF-based baseline methods, but the 

GGF-TALS has much lower computational complexity, as shown by the simulation results, and (b) the proposed GGF algorithms 

perform better than the state-of-the-art GF-based baseline methods.  
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 Introduction  

Recent years have seen a surge in study into blind identification (BI) of linear mixes, which has applications in 

many areas of signal processing, including blind source separation (.BSS). This study focuses on BI for 

uncertain combinations whose origins are difficult to pin down. The receiving of more sources than sensors 

become more achievable with the expansion in reception bandwidth, making underdetermined mix trues a 

typical occurrence in many real-world applications like radio communication contexts. Complex sources are 

another common challenge in these contexts. Quadrature amplitude modulation (QAM) and minimum-shift 

keying (MSK) transmissions are examples of complex-valued communication signals. Also, objective functions 

used in the frequency domain are typically defined on complex-valued variables, which makes them well-suited 

for blind separation and identification from convolutive mix trues [1,2]. Many BI approaches for 

underdetermined mixtures assume that the sources are either naturally sparse (in their own domain, like the time 

domain) or can be made sparse (in a transform domain, for example). If the signal is not sparse by definition, it 

is common practice to apply a predetermined transform, such the short-time Fourier transform (STFT), or a 

learnt transform utilizing, for instance, simultaneous codeword optimization (Simcoe), in order to sparsity the 

data [3,4]. 

 High signal levels in the directions of the mixing vectors, which can be localized using the scatter plot, are 

usual since the sources are relatively few in number. bear in mind that although certain signals, like voice 

signals, do exhibit a degree of sparsity in one domain or another, many other signals, like the vast majority of 

communication signals, do not. As a result, it is important to create BI techniques for the underdetermined 

mixes that do not need the sources to be sparse. Decomposition techniques based on distinct data structures, 

such correlation [7,8] and higher-order cumulant [9–14] matrices, are often used in approaches for BI of 

underdetermined mixtures to achieve this goal. The fundamental concept behind these techniques is to first 

estimate the mixing matrix by decomposing a tensor built from the cumulants of the data. This is especially true 

for algorithms like the Second-Order Blind Identification of Underdetermined Mixtures (SOBIUM) [7], the 
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Fourth-Order Blind Identification of Underdetermined Mixtures (FOBIUM) [9], the Fourth-Order-Only Blind 

Identification of Underdetermined Mixtures (FOOBI) [10], the Fourth-Order-Only Blind Identification of 

Underdetermined Mixtures (FOOBI-2) [10], and the Blind Identification of Mixtures of Sources Using 

Redundancies in the data Based on the even-order cumulants of the observations, a family of approaches is 

proposed in [13] with the term blind identification of over-complete mixtures of sources (BIOME). The data 

measured by second-order or higher-order statistics are the only ones used by any of the techniques provided in 

[7-14]. 

 Definition of the Issues Taking into account the linear mixing model shown below 

 

where the stochastic vector z(t) ∈ C Q represents the observation signals, s(t) ∈ C P contains the unobserved 

source signals, and w(t) ∈ C Q denotes additive noise. From now on, the noise w(t) is simply ignored for 

convenience, except when running computer experiments. The unknown mixing matrix A ∈ C Q × P 

characterizes the way that the sources are acquired by the sensors. BI aims to estimate the mixing matrix from 

the observations based on the assumption that the source signals are statistically independent. The mixing matrix 

obtained may in turn be used to estimate the original source signals from the observations. In addition, we make 

the following assumptions: (i). The mixing matrix A is of full (row) rank. (ii).The number P of sources is 

known. (iii). The number of sensors is smaller than the number of sources, i.e., Q<P. 

Algebraic structure based on generalized generating function 3.1. Core equation based on generalized generating 

function For a real stochastic vector x ∈ R Q, the GF ϕx(u) obtained by dropping the term of the square root of 

(−1) in the exponent of a CAF is defined as 

 

where u ∈ R Q is an arbitrary vector referred to as a processing point [15], and E[ ] denotes an expectation 

operator. Nevertheless, both the observation vector z and the mixing matrix A discussed in this paper belong to 

the complex field. Hence, a definition of GF for complex variables is required. One such definition has been 

presented in [18] as 

 

where Rð Þ⋅ and Ið Þ⋅ denote taking the real and imaginary parts from their arguments (i.e., complex-valued 

vectors) to form a real-valued vector of the same dimension. It is actually defined by assimilating C to R2 . Thus 

the GF of a complex variable in (3) is defined as a function of the real and imaginary parts. In this paper, we 

generalize the definition of GF for real stochastic vector in (2) to the following complex from  

 

Note that the statistical information exploited by GF/ GGF is related to the number of processing points. 

Theoretically, a complete statistical description of the probability density function requires the evaluation of the 

GF/GGF at all (infinitely many) possible processing points. However, this often becomes computationally 

infeasible. In practice, such statistical information is obtained approximately by the evaluation of GF/GGF at a 

finite number of processing points. Hence, in comparison with the GF presented in [18], the GGF defined in (4) 

can exploit the statistical information carried on the complex variables more effectively when the number of the 

processing points stays the same, thanks to the incorporation of the imaginary part of the exponent to the 

function. Furthermore, as compared with the use of the GF in (3), using the GGF in (4) offers a simpler way for 

the estimation of the mixing matrix due to the exploitation of an elegant algebraic structure. Now, replacing z by 

its model and neglecting the noise contribution yield 
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 Defining  

 

which is often referred to as the ‘second’ GGF, and using the source independence 

property, the second GGF of the observations can be rewritten as 

 

Consequently, by calculating the derivative of the conjugate gradient of φz(u) with respect to u (more details can 

be found in Appendix 1), we can obtain the following core equation for the Hessian matrix ψz(u) 

 

Wich  

 

The conjugate operator is shown by ()*. It's important to note that s(AHu) is a diagonal matrix (see Appendix 2 

for further information). 

Tensor decomposition-based blind identification 

 The GGF-ALS and GGF-TALS algorithms are constructed in this part to estimate the mixing matrix. The 

Hessian matrices of the GGF of the data are decomposed to estimate the mixing matrix in the GGF-ALS 

technique. The GGF-TALS algorithm, which is an enhancement of the GGF-ALS method, is also created. 

the GGF-ALS algorithm's original tensor is converted to a lower-rank core tensor using Tucker decomposition, 

and then the mixing matrix is computed via ALS decomposition of the core tensor. 

Analysis and simulations  

 Here, we give simulations to demonstrate how the suggested GGF methods fare when applied to uncertain 

mixes of complicated sources. Algorithms are measured and compared based on their relative error performance 

index (PI) in relation to the sample size and the signal-to-noise ratio (SNR) of the observations. Here we define 

the relative error PI as [7] PI 14 EfjjAA jj=jjAjjg, where A is the ideally or dered and scaled approximation of 

the mixing matrix, and fjj is the Frobenius norm. The tests assume a uniform circular array (UCA) with Q = 3 

identical sensors of radius Ra receiving signals from a P = 4 nar rowband source. The elements of the mixing 

matrix A for a free-space propagation model are 

 

given that q = (Ra/)cos(2(q 1)/Q), q = (Ra/)sin(2(q 1)/Q, and j 14 ffi1 p. Ra/ = 0.55 is the result. The DOAs of 

the various sources are provided by (1, 3, 10, 2, 5, 0), (1, 7, 9, 10, 3, 3, 4, 4) and (1, 7, 10, 2, 3, 4, 4) 

respectively. The filters have a roll-off of = 0.3 and are designed to shape 4-QAM sources with a unit-variance 

distribution. The length of each source's symbols is constant: T = 4Te, where the is the sampling interval. Zero-

mean complex additive Gaussian noise is present in the observations. To start, we analyse the impact of the rank 

of the core tensor L on the performance of the GGF-TALS algorithm by comparing it to that of the GGF-ALS 

method. This is investigated using two separate simulation studies. In the first simulation, we compare the 

performance of GGF-ALS and GGF-TALS when both algorithms are run with the same number of processing 

points K but with varying ranks for their core tensors L. The simulation runs with 4,000 samples and a signal-to-

noise ratio (SNR) of 0-25 dB, with K set to 100 for the GGF-ALS algorithm. The real and imaginary portions of 
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processing points are picked at random from [1; 1]. For the GGF-TALS method, the core tensor rank is set at L 

= 10,8,5. The ALS method is terminated at the threshold value of 105 as indicated in (12), and 100 Monte Carlo 

simulations are performed. Figure 2 displays the average performance of the GGF-TALS algorithm in relation 

to the core tensor rank for a constant number of processing points. Evidently, the 

 

Figure 2 Performance of GGF-TALS versus core tensor order for a fixed number of processing points. The results for GGF-ALS are 

also shown for comparison. 

There is no difference between the performance curves of GGF-TALS and GGF-ALS for core tensor ranks 

more than 8, however the GGF-TALS method suffers from a little drop in performance for core tensor ranks 

fewer than 8. The identification accuracy provided by GGF-TALS is identical to that provided by GGF-ALS, 

despite the fact that the core tensors in GGF-TALS have a substantially lower rank than the original tensor 

utilized by GGF-ALS. In the second experiment, we look at how the GGF-TALS method fares when we 

maintain the same rank for the core tensor L but change the number of processing points K. Except for a lower 

rank of the core tensor in the GGF-TALS algorithm and higher numbers of processing points in the GGF-ALS 

algorithm (20, 40, and 100, respectively), all other simulation parameters remain the same as before. Figure 3 

shows that, for a given core tensor rank, the GGF-TALS's average performance degrades as the number of 

processing points grows. We can observe that the average performance of GGF-TALS is comparable to that of 

GGF-ALS when both algorithms employ the same number of processing points. For instance, for K = 40, GGF-

TALS performs similarly to GGF ALS at 100 processing points. Thus, the GGF-TALS algorithm yields similar 

results to GGF-ALS regardless of the number of processing points used. Secondly, we compare the most recent 

GF-based BI algorithm to its two forerunners, GGF-ALS and GGF-TALS. As a point of departure, we use the 

LEMACFAC-2 method outlined in [18]. The overall number of processing points and per-point value are same 

throughout the GGF-ALS, GGF TALS, and LEMACFAC-2. There are 100 processing nodes, the core tensor 

has a rank of 8, and the real and imaginary parts of the nodes are picked at random from [1; 1]. The LM 

algorithm [26] is used in the LEMACFAC-2 method, and the associated stop value is 105 as given in (12). 

Figure 4 shows the PI as a function of the SNR for each of the investigated techniques, using a dataset of size 

4,000 samples. As can be seen in the image, the GGF-ALS and GGF-TALS both perform better than 

LEMACFAC-2. You can see the proof in Figure 2. 

 

Figure 3 The performance of GGF-TALS versus the number of processing points. The results for GGF-ALS are also shown for 

comparison 
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Figure 4 The performance of the tested algorithms versus the SNR of the observations. 

 

Figure 5 The performance of the tested algorithm versus the size of the data set. 

the SNR (in dB) at which each method was evaluated as a function of the sample size (N). Once again, the 

GGF-ALS and GGF-TALS algorithms outperform LEMACFAC-2, and they almost match the performance of 

LEMACFAC-2. This demonstrates that, for a given number of processing points, the GGF algorithms 

outperform the approach based on the GF specified in (3) when it comes to making use of the statistical 

information contained in the complex variables. 

Conclusions 

 We introduce two methods, GGF-ALS and GGF-TALS, that use the second GGF of the observations to 

perform blind identification from uncertain mixes of complicated sources. The Hessian tensor built from the 

second GGF of the data is used to directly deconstruct the ALS method to estimate the mixing matrix in the 

GGF-ALS algorithm. The GGF-TALS method is an enhanced variant of the GGF-ALS algorithm that uses the 

Tucker decomposition to transform the input tensor into a lower-rank core tensor before estimating the mixing 

matrix using the ALS technique. Based on the simulation results, (a) the proposed GGF-ALS and GGF-TALS 

approaches perform almost similarly in terms of the relative errors, while the GGF-TALS has a much lower 

computational complexity, and (b) the proposed GGF algorithms perform better than the most recent GF-based 

BI approaches because they better exploit the statistical information carried on complex variables. 
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